Statistical Learning Methods to Predict Activity Intensity from Body-Worn Accelerometers

Main Article Content

Drew Lazar
https://orcid.org/0000-0003-2278-6705
Munni Begum
Md Monzur Murshed
https://orcid.org/0000-0002-7132-6433
Benjamin Nelson
https://orcid.org/0000-0002-1701-6071
Joshua M Bock
Mary Imboden
https://orcid.org/0000-0003-4088-814X
Leonard Kaminsky
Alexander Montoye

Abstract

 Physical activity, especially when performed at moderate or vigorous intensity, has short- and long-term health benefits, but measurement of free-living physical activity is challenging. Accelerometers are popular tools to assess physical activity, although accuracy of conventional accelerometer analysis methods is suboptimal. This study developed and tested statistical learning models for assessing activity intensity from body-worn accelerometers. Twenty-eight adults performed 10-21 activities of daily living in two visits while wearing four accelerometers (right hip, right ankle, both wrists). Accelerometer placement is of crucial practical concern and this paper addresses this issue. Boosting, bagging, random forest and decision tree models were created for each accelerometer and for two-, three-, and four-accelerometer combinations to predict activity intensity. Research staff observations of activity intensity served as the criterion. Point estimates of error for the ankle accelerometer were 2.2-4.7 percentage points lower than other single-accelerometer placements, and the left wrist-ankle combination had errors 0.8-5.8 percentage points lower than other two-accelerometer combinations. Decision trees had poorer accuracy than the other models. Using an accelerometer worn on the lower limb, by itself or in combination with an upper-limb accelerometer, appears to offer optimal accuracy for activity intensity measurement.

Downloads

Download data is not yet available.

Article Details

How to Cite
Lazar, D., Begum , M. ., Murshed , M. M. ., Nelson, B., Bock, J. M., Imboden , M. ., Kaminsky, L., & Montoye, A. . (2020). Statistical Learning Methods to Predict Activity Intensity from Body-Worn Accelerometers. Journal of Biomedical Analytics, 3(1), 27–50. https://doi.org/10.30577/jba.v3i1.57
Section
Research Articles

References

Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett Jr DR, Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS (2011). “2011 Compendium of Physical Activities: a second update of codes and MET values.†Medicine & Science in Sports & Exercise, 43(8), 1575–1581. doi:http://dx.doi.org/10.1249/MSS.0b013e31821ece12.

Alhassan S, Sirard JR, Kurdziel LB, Merrigan S, Greever C, Spencer RM (2017). “Cross-validation of two accelerometers for assessment of physical activity and sedentary time in preschool children.†Pediatric Exercise Science, 29(2), 268–277. doi:http://dx.doi.org/10.1123/pes.2016-0074.

Bangdiwala SI (2017). “Graphical aids for visualizing and interpreting patterns in departures from agreement in ordinal categorical observer agreement data.†Journal of Biopharmaceutical Statistics, 27(5), 773–783. doi:http://dx.doi.org/10.1080/10543406.2016.1273941.

Breiman L (1996). “Bagging predictors.†Machine Learning, 24(2), 123–140. doi:http://dx.doi.org/10.1007/BF00058655.

Breiman L (2001). “Random forests.†Machine Learning, 45(1), 5–32.

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification and regression trees. Wadsworth Statistics/Probability Series. Wadsworth Advanced Books and Software, Belmont, CA. ISBN 0-534-98053-8; 0-534-98054-6. doi:http://dx.doi.org/10.1201/9781315139470.

Chowdhury AK, Tjondronegoro D, Chandran V, Trost SG (2017). “Physical activity recognition using posterior-adapted class-based fusion of multiaccelerometer data.†IEEE Journal of Biomedical and Health Informatics, 22(3), 678–685. doi:http://dx.doi.org/10.1109/JBHI.2017.2705036.

Cohen J (1968). “Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit.†Psychological Bulletin, 70(4), 213. doi:http://dx.doi.org/10.1037/h0026256.

Dannecker KL, Sazonova NA, Melanson EL, Sazonov ES, Browning RC (2013). “A comparison of energy expenditure estimation of several physical activity monitors.†Medicine & Science in Sports & Exercise, 45(11), 2105. doi:http://dx.doi.org/10.1249/MSS.0b013e318299d2eb.

Donaldson SC, Montoye AH, Imboden MT, Kaminsky LA (2016). “Variability of objectively measured sedentary behavior.†Medicine & Science in Sports & Exercise, 48(4), 755. doi:http://dx.doi.org/10.1249/MSS.0000000000000828.

Dong B, Montoye A, Moore R, Pfeiffer K, Biswas S (2013). “Energy-aware activity classification using wearable sensor networks.†In Sensing Technologies for Global Health, Military Medicine, and Environmental Monitoring III, volume 8723, p. 87230Y. International Society for Optics and Photonics. doi:http://dx.doi.org/10.1117/12.2018134.

Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, Bauman A, Lee IM, Series LPA, Group LSBW, et al. (2016). “Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women.†The Lancet, 388(10051), 1302–1310. doi:http://dx.doi.org/10.1016/S0140-6736(16)30370-1.

Farrahi V, Niemelä M, Kangas M, Korpelainen R, Jämsä T (2019). “Calibration and validation of accelerometer-based activity monitors: A systematic review of machine-learning approaches.†Gait Posture, 68, 285–299. doi:http://dx.doi.org/10.1016/j.gaitpost.2018.12.003.

Freedson PS, Melanson E, Sirard J (1998). “Calibration of the Computer Science and Applications, Inc. accelerometer.†Medicine & Science in Sports & Exercise, 30(5), 777–781. doi:http://dx.doi.org/10.1097/00005768-199805000-00021.

Freund Y, Schapire RE (1997). “A decision-theoretic generalization of on-line learning and an application to boosting.†Journal of Computer and System Sciences, 55(1), 119–139. doi:http://dx.doi.org/10.1006/jcss.1997.1504.

Hager ER, Treuth MS, Gormely C, Epps L, Snitker S, Black MM (2015). “Ankle accelerometry for assessing physical activity among adolescent girls: threshold determination, validity, reliability, and feasibility.†Research Quarterly for Exercise and Sport, 86(4), 397–405. doi:http://dx.doi.org/10.1080/02701367.2015.1063574.

Hibbing PR, Lamunion SR, Kaplan AS, Crouter SE (2018). “Estimating Energy Expenditure with ActiGraph GT9X Inertial Measurement Unit.†Medicine & Science in Sports & Exercise, 50(5), 1093–1102. doi:http://dx.doi.org/10.1249/MSS.0000000000001532.

Hogg RV, McKean J, Craig AT (2005). Introduction to mathematical statistics. Pearson Education. doi:https://doi.org/10.1080/10543406.2013.756334.

John D, Freedson P (2012). “ActiGraph and Actical physical activity monitors: a peek under the hood.†Medicine & Science in Sports & Exercise, 44(1 Suppl 1), S86. doi:http://dx.doi.org/10.1249/MSS.0b013e3182399f5e.

Kaminsky LA, Brubaker PH, Guazzi M, Lavie CJ, Montoye AH, Sanderson BK, Savage PD (2016). “Assessing physical activity as a core component in cardiac rehabilitation: a position statement of the american association of cardiovascular and pulmonary rehabilitation.†Journal of cardiopulmonary rehabilitation and prevention, 36(4), 217–229. doi:http://dx.doi.org/10.1097/HCR.0000000000000191.

Kerr J, Patterson RE, Ellis K, Godbole S, Johnson E, Lanckriet G, Staudenmayer J (2016). “Objective assessment of physical activity: classifiers for public health.†Medicine & Science in Sports & Exercise, 48(5), 951. doi:http://dx.doi.org/10.1249/MSS.0000000000000841.

Kim H, Loh WY (2001). “Classification trees with unbiased multiway splits.†Journal of the American Statistical Association, 96(454), 589–604. doi:http://dx.doi.org/10.1198/016214501753168271.

Landis JR, Koch GG (1977). “The measurement of observer agreement for categorical data.†Biometrics, pp. 159–174. doi:http://dx.doi.org/10.2307/2529310.

Lipkovich I, Dmitrienko A, Denne J, Enas G (2011). “Subgroup identification based on differential effect searchâ˘A ˇTa recursive partitioning method for establishing response to treatment in patient subpopulations.†Statistics in Medicine, 30(21), 2601–2621. doi:http://dx.doi.org/10.1002/sim.4289.

Löf M, Henriksson H, Forsum E (2013). “Evaluations of Actiheart, IDEEA R and RT3 monitors for estimating activity energy expenditure in free-living women.†Journal of Nutritional Science, 2.

Loh WY (2002). “Regression tress with unbiased variable selection and interaction detection.†Statistica Sinica, pp. 361–386.

Loh WY, He X, Man M (2015). “A regression tree approach to identifying subgroups with differential treatment effects.†Statistics in Medicine, 34(11), 1818–1833. doi:http://dx.doi.org/10.1002/sim.6454.

Lu K, Yang L, Seoane F, Abtahi F, Forsman M, Lindecrantz K (2018). “Fusion of Heart Rate, Respiration and Motion Measurements from a Wearable Sensor System to Enhance Energy Expenditure Estimation.†Sensors, 18(9), 3092. doi:http://dx.doi.org/10.3390/s18093092.

Lyden K, Petruski N, Mix S, Staudenmayer J, Freedson P (2014). “Direct observation is a valid criterion for estimating physical activity and sedentary behavior.†Journal of Physical Activity and Health, 11(4), 860–863. doi:http://dx.doi.org/10.1123/jpah.2012-0290.

Mackintosh K, Montoye AH, Pfeiffer K, McNarry M (2016). “Investigating optimal accelerometer placement for energy expenditure prediction in children using a machine learning approach.†Physiological Measurement, 37(10), 1728. doi:http://dx.doi.org/10.1088/0967-3334/37/10/1728.

Marcotte RT, Petrucci JG, Cox MF, Freedson PS, Staudenmayer JW, Sirard JR (2019). “Estimating Sedentary Time from a Hip-and Wrist-worn Accelerometer.†Medicine & Science in Sports & Exercise. doi:http://dx.doi.org/10.1249/MSS.0000000000002099.

Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, Troiano RP (2008). “Amount of time spent in sedentary behaviors in the United States, 2003–2004.†American Journal of Epidemiology, 167(7), 875–881. doi:http://dx.doi.org/10.1093/aje/kwm390.

Montoye AH, Begum M, Henning Z, Pfeiffer KA (2017). “Comparison of linear and nonlinear models for predicting energy expenditure from raw accelerometer data.†Physiological Measurement, 38(2), 343. doi:http://dx.doi.org/10.1088/1361-6579/38/2/343.

Montoye AH, Mudd LM, Biswas S, Pfeiffer KA (2015). “Energy Expenditure Prediction Using Raw Accelerometer Data in Simulated Free Living.†Medicine & Science in Sports & Exercise, 47(8), 1735–1746. doi:http://dx.doi.org/10.1249/MSS.0000000000000597.

Montoye AH, Pivarnik JM, Mudd LM, Biswas S, Pfeiffer KA (2016). “Validation and comparison of accelerometers worn on the hip, thigh, and wrists for measuring physical activity and sedentary behavior.†AIMS Public Health, 3(2), 298.

Montoye AH, Westgate BS, Fonley MR, Pfeiffer KA (2018). “Cross-validation and out-of-sample testing of physical activity intensity predictions with a wristworn accelerometer.†Journal of Applied Physiology, 124(5), 1284–1293. doi:http://dx.doi.org/10.1152/japplphysiol.00760.2017.

O’Driscoll R, Turicchi J, Beaulieu K, Scott S, Matu J, Deighton K, Finlayson G, Stubbs J (2018). “How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies.†British Journal of Sports Medicine, pp. bjsports–2018. doi:http://dx.doi.org/10.1017/S0029665118001532.

Ozemek C, Cochran HL, Strath SJ, Byun W, Kaminsky LA (2013). “Estimating relative intensity using individualized accelerometer cutpoints: the importance of fitness level.†BMC Medical Research Methodology, 13(1), 53. doi:http://dx.doi.org/10.1186/1471-2288-13- 53.

Pate RR, Pratt M, Blair SN, Haskell WL, Macera CA, Bouchard C, Buchner D, Ettinger W,

Heath GW, King AC, et al. (1995). “Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine.†JAMA, 273(5), 402–407. doi:http://dx.doi.org/10.1001/jama.273.5.402.

Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, George SM, Olson RD (2018). “The physical activity guidelines for Americans.†JAMA, 320(19), 2020–2028. doi:http://dx.doi.org/10.1001/jama.2018.14854.

Quinlan JR (1993). “C4.5: Programming for machine learning.†Morgan Kauffmann, 38, 48.

Sasaki JE, Hickey A, Staudenmayer J, John D, Kent JA, Freedson PS (2016). “Performance of activity classification algorithms in free-living older adults.†Medicine & Science in Sports & Exercise, 48(5), 941. doi:http://dx.doi.org/10.1249/MSS.0000000000000844.

Staudenmayer J, He S, Hickey A, Sasaki J, Freedson P (2015). “Methods to estimate aspects of physical activity and sedentary behavior from high-frequency wrist accelerometer measurements.†Journal of Applied Physiology, 119(4), 396–403. doi:http://dx.doi.org/10.1152/japplphysiol.00026.2015.

Toth LP, Park S, Springer CM, Feyerabend MD, Steeves JA, Bassett DR (2018). “Video-recorded validation of wearable step counters under free-living conditions.†Medicine & Science in Sports & Exercise, 50(6), 1315–1322. doi:http://dx.doi.org/10.1249/01.mss.0000535946.47131.ae.

Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, Chastin SF, Altenburg TM, Chinapaw MJ (2017). “Sedentary behavior research network (SBRN)– terminology consensus project process and outcome.†International Journal of Behavioral Nutrition and Physical Activity, 14(1), 75. doi:http://dx.doi.org/10.1186/s12966-017- 0525-8.

Troiano RP, McClain JJ, Brychta RJ, Chen KY (2014). “Evolution of accelerometer methods for physical activity research.†British Journal of Sports Medicine, 48(13), 1019–1023. doi:http://dx.doi.org/10.1136/bjsports-2014-093546.