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Abstract: Brain disorder characterized by seizure is a common disease among people in
the world. Characterization of electroencephalogram (EEG) signals in terms of complexity
can be used to identify neurological disorders. In this study, a non-linear epileptic seizure
detection method based on multiscale entropy (MSE) has been employed to characterize
the complexity of EEG signals. For this reason, the MSE method has been applied on Bonn
dataset containing seizure and non-seizure EEG data and the corresponding results in terms
of complexity have been obtained. Using statistical tests and support vector machine (SVM),
the classification ability of the MSE method has been verified on Bonn dataset. Our results
show that the MSE method is a viable approach to identifying epileptic seizure demonstrat-
ing a classification accuracy of 91.7%.

Keywords: Epileptic seizure, Complexity, Multiscale entropy, EEG signals, Support vector
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1 Introduction

Epilepsy, according to the world health organization, is considered the second most preva-
lent brain disorder behind stroke among different neurological disorders. People suffer from
epilepsy due to sudden and recurrent incident of epileptic seizures that may increase physi-
cal injury and even result in death (Buck et al., 1997). Seizures occur due to transient and
unexpected electrical disturbance of the brain that is observed in the electroencephalogram
(EEG) signals. Studies show that an estimated 0.6-0.8% of the total world population suffer
from epilepsy (Mormann et al., 2007). As a result, the effective detection of epileptic seizure
is necessary.
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Electroencephalography (EEG) is a valuable tool for the diagnosis and analysis of
epilepsy (Rizvi et al., 2013). But detection of epileptic seizures with EEG is time-consuming
and error-prone (Wang et al., 2017) because of visual analysis of EEG data by the physi-
cian and discriminating opinions on the diagnostic results reported by different experts with
differing levels of diagnostic experience (Wang et al., 2016; Yan et al., 2018). Hence, it is
urgent to develop an automated, reliable and robust method for detecting epileptic activity
in EEG signals.

In the literature, there exists various epileptic seizures detection methods that are cat-
egorized into five domains such as time domain (Shanir et al., 2015), frequency domain
(Bhople and Tijare, 2012), wavelet domain (time-frequency) (Polat and Ozerdem, 2016),
empirical mode decomposition (EMD) (Huang et al., 1998) and rational transform domain
(Samiee et al., 2014). Among these five domains, several non-linear methods like Lyapunov
exponent (Faust et al., 2015), higher-order spectra (HOS) (Acharya et al., 2012), informa-
tion theory and entropy (Fu et al., 2015) and intrinsic mode functions (IMF)(Kumar et al.,
2010) also exist for detecting epileptic seizures in EEG signals. Since EEG signals are highly
non-linear, the existing non-linear methods showed high capability for detecting epileptic
seizures rather than linear methods.

In this research, we are considering the MSE (non-linear) approach to detecting epileptic
seizure in complexity domain. Before considering MSE approach, we discuss some entropy
measures used to characterize EEG signals in complexity domain. Approximate entropy
(Pincus, 1991) and sample entropy are considered two such measures. To understand these
two entropy measures, we need to realize entropy. Entropy is a non-linear processing tool
and is the measure of the irregularity and disorder. For example, entropy refers to the degree
of randomness (unpredictability) and irregularity of analysed time series. The entropy of a
time series will have a higher value if the time series shows more irregularity in the amount
of information and vice versa.

Approximate entropy is used to quantify the complexity of time series. For example, if
the time series reveals more irregularity in the amount of information, the complexity of
time series will be higher and vice versa. If the complexity of a time series is higher, the
approximate entropy will be higher.

Sample entropy is also used to measure the complexity of time series. It is the modifica-
tion of approximate entropy and obtained by removing bias from the approximate entropy.
The sample entropy of a time series will be lower if the time series represents the higher
predictability in the amount of information. Moreover, the time series will be less com-
plex because of demonstrating higher regularity. Sample entropy has better performance
compared to approximate entropy.

Although both approximate entropy and sample entropy quantify the complexity of time
series, these two entropy measures do not consider the multiple time scales in time series.
As a result, the MSE approach was proposed to quantify the complexity of time series by
taking into account the different time scales. Since its beginning, it has been used in various
research fields such as biomedical time series (Costa et al., 2005; Humeau et al., 2011;
Humeau-Heurtier et al., 2012), electroseismic time series (Guzman-Vargas et al., 2008) and
financial time series (Niu and Wang, 2015).

Though the existing non-linear methods analysed EEG signals for detecting epileptic
seizures , none of the existing non-linear methods analysed EEG signals in complexity do-
main. As a result, the MSE approach has been employed to identify epileptic seizure by
measuring the complexity of EEG signals.
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2 Methods

2.1 Multiscale entropy

The multiscale entropy (MSE) approach (Costa et al., 2002) determines sample entropy
(SamEn) (Richman and Moorman, 2000) over different time scales to characterize the un-
derlying complexity of non-linear time series. For calculating the SamEn, the MSE method
includes three parameters- τ (time lags), m (embedding dimensions) and r (threshold
value). The MSE analysis has the following two steps:

• To define temporal scales of increasing length, apply coarse graining process to the
following time series:

{ui}Ni=1

where N denotes the number of samples in the time series. For a scale factor ξ, the
resulting coarse grained time series is calculated as:

xξj =
1

ξ

jξ∑
i=(j−1)ξ+1

ui

where 1 ≤ j ≤ N
ξ .

• To plot sample entropy as a function of scale factor ξ, consider the algorithm men-
tioned in subsection 2.2, and calculate sample entropy for each coarse grained time
series xξj .

2.2 Algorithm: Sample entropy

• Form (N −m) vectors Um(1), Um(2), ..., Um(N −m) defined by Um(i)= [um(i), um(i+
1), ..., um(i+m− 1)], where i = 1, 2, ..., N −m.

• Determine the distance between two vectors Um(i) and Um(j) as maximum norm
d[Um(i), Um(j)] = maxk=1,...,m{|u(i+ k − 1)− u(j + k − 1)|}.

• Estimate the frequency of occurrence as Ami (r) = 1
N−m−1Ai and define a global quan-

tity, Am(r) = 1
N−m

∑N−m
i=1 Ami (r), where d[Um(i), Um(j)] ≤ r, j 6= i, r denotes a

threshold value.
• Extend the dimension of the vectors to m + 1 and calculate the frequency of

occurrence Am+1
i (r) = 1

N−m−1Ai and define a global quantity Am+1 (r) =
1

(N−m)

∑(N−m)
i=1 Am+1

i (r), where Ai denotes the number of calculated vectors for a
given Um+1(i) , such that d[Um(i), Um(j)] ≤ r, j 6= i.

• Finally, calculate the sample entropy by using SEn(m, r,N) = −ln[A
m+1(r)
Am(r) ] for a tol-

erance level r, where SEn denotes the sample entropy, m is the pattern length and N
is the length of the time series.

2.3 EEG dataset

The EEG dataset (Andrzejak et al., 2001)(Bonn dataset) used in this study was collected
from the Department of Epileptology, University of Bonn, Germany. The dataset comprises
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Figure 1: EEG datasets used in this study

of five sets from A to E, each containing 100 single-channel scalp and intracranial EEG seg-
ments. Each segment consists of 4097 samples of one EEG time series. The duration of each
segment was 23.6 s. Data set A and B represent normal EEG, C and D demonstrate interictal
EEG (EEG data collected during seizure-free interval) and E refers to ictal EEG (EEG data
collected during seizure activity). The EEG signals were sampled using 12-bit A-D resolution
at 173.61 Hz rate. Data was collected with 128-channel amplifier following standard 10-
20 electrode placement system. No pre-processing was applied to EEG segments. Table 1
provides the detail information about Bonn dataset. The sample EEG signals of Bonn dataset
are shown in Figure 1.

Table 1: Detail of EEG dataset

Dataset Recorded position Subject state Recording Period
A Cortex Healthy Awake and relaxed state

with eye open
B Cortex Healthy Awake and relaxed state

with eye closed
C Hippocampal formation Epilepsy Seizure-free intervals
D Epileptogenic zone Epilepsy Seizure-free intervals
E Epileptogenic zone Epilepsy Seizure activity
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3 Results

3.1 Epileptic seizure estimation based on Bonn dataset

In this subsection, we have analysed the EEG dataset using proposed epileptic seizure de-
tection method (MSE) in terms of complexity. The embedding dimension (m) and time lag
(τ) are chosen as 1 and 1 respectively for all results performed in this study. The threshold
value r has been selected with trial and error as 20% of the standard deviation of the original
signal for better separation among MSE curves. Figure 2 demonstrates that nonseizure ac-
tivity (A-D) reveals higher complexity in EEG signals than seizure activity (E) due to higher
sample entropy values for the majority of the scale factors. During nonseizure activity, the
brain contains less functional processes compared to seizure activity, thus makes EEG signals
more irregular and increases its complexity. On the other hand, more functional processes
are active in the brain during seizure activity. As a result, regular patterns are observed in
EEG signals and thus reduces its complexity. Due to non-overlapping behaviour of seizure
and nonseizure EEG signals in terms of complexity for the majority of the scale factors, the
proposed MSE method can be used to detect epileptic seizure.

From Figure 3, it is observed that normal EEG signals show higher complexity rather
than interictal and ictal EEG signals. As normal and interictal EEG signals do not represent
seizure activity, the higher complexity exists in these two signals than ictal EEG signals.
Since ictal EEG signals were recorded during seizure activity, its structure is more regular
and thus shows lower complexity. As a result, the epileptic seizure can be detected by the
proposed MSE algorithm in the complexity domain.

3.2 Model evaluation

To validate the results obtained using the MSE method, 40 mean sample entropy values [20
from each class (A vs. E, B vs. E, C vs. E and D vs. E)] and 60 mean sample entropy
values [ 20 from each class (normal, interictal and ictal)] are applied to the input of a
classifier (SVM) to measure the sensitivity, specificity and classification accuracy. Since SVM
provided a promising classification accuracy compared to other classifiers, it has been used
as a classifier. Student t-test and One-way ANOVA test have also been used to verify the
MSE method. In this work, 5 fold cross validation is performed to avoid biased classification
performance and the statistical parameters (sensitivity, specificity and accuracy) are used to
quantify the classification performance of the MSE method in the complexity domain. The
statistical parameters are defined as follows:

Sensitivity =
TP

TP + FN
× 100% (1)

Specificity =
TN

TN + FP
× 100% (2)

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (3)

where TP and TN refer to the total number of correctly identified true nonseizure events
and true seizure events respectively and FP and FN represent the total number of incorrectly
identified true nonseizure events and true seizure events respectively.
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Figure 2: MSE analysis of EEG time series (a) During eyes open (nonseizure) and seizure
activity (b) During eyes closed (nonseizure) and seizure activity (c) During seizure-free
interval (nonseizure) and seizure activity (d)During seizure-free interval (nonseizure) and
seizure activity. The points on the curves represent mean value and error bars represent the
standard deviation.

The classification results obtained by SVM have been shown in Table 2, Table 3 and Table
4. Table 2 demonstrates that the SVM has classified nonseizure and seizure EEG signals (A
vs. E, B vs. E, C vs. E and D vs. E) with an accuracy of 92.5%, 90%, 90% and 92.5%
respectively. Moreover, student t-test has justified that seizure (A,B,C,D) and nonseizure (E)
EEG signals are statistically significantly different due to p <0.01 (null hypothesis rejection).
According to the confusion matrix of table 3, 5 mean sample entropy values from the ictal
EEG class are classified incorrectly, as mean sample entropy values from interictal EEG.
However, 20 mean sample entropy values of interictal EEG and 20 mean sample entropy
values of Normal EEG are classified accurately by the classification algorithm.
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Figure 3: MSE analysis of normal, interictal and ictal EEG signals. The points on the curves
represent mean value and error bars represent the standard deviation.

Table 2: Classification Accuracies of two classes (A vs E, B vs E, C vs E and D vs E)

EEG Dataset Sensitivity (%) Specificity (%) Accuracy (%)
A vs. E 100 85 92.5
B vs. E 100 80 90
C vs. E 90 80 90
D vs. E 100 85 92.5

Table 3: Confusion matrix of SVM classifier output

True/Predicted Ictal EEG Interictal EEG Normal EEG
Ictal EEG 15 5 0
Interictal EEG 0 20 0
Normal EEG 0 0 20

Table 4: Classification accuracy of three classes (normal, interictal and ictal EEG )

EEG recordings Sensitivity (%) Specificity (%) Total Accuracy (%)
Ictal EEG 75 100 91.7
Interictal EEG 100 87.5
Normal EEG 100 100

J Biomed Analytics, Vol. 3 No. 1 (2020), pp. 1–11
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Table 4 shows that the classification algorithm has classified normal, interictal and ictal
EEG signals with an overall accuracy of 91.7%. Besides, statistically significant difference
has been found among normal, interictal and ictal EEG signals as One-way ANOVA test
demonstrated p < 0.01.

4 Discussion

In this work, characterization of EEG signals collected from Bonn dataset has been repre-
sented in complexity domain to detect epileptic seizure. Although there are various epilep-
tic seizure detection methods (Guo et al., 2011; Yuan Q, 2011; Nicolaou and Georgiou,
2012; Kumar et al., 2014; Song et al., 2016; Zhang et al., 2019) in the state of literature,
the proposed method based on complexity is novel. The complexity curves showing non-
overlapping behaviour for the majority of the scale factors have proved that epileptic seizure
can be detected in complexity domain. These complexity results have been verified using
support vector machine (SVM) and statistical tests (student t-test and One-way ANOVA
test). SVM has been used as it provided promising classification accuracy compared to other
classifiers.

As the SVM has provided the sensitivity, specificity and classification accuracy for non-
seizure vs. seizure data sets (A vs. E, B vs. E, C vs. E and D vs. E) as 90%-100%, 80%-85%
and 90%-92.5% respectively, it can be inferred that the complexity features of seizure and
nonseizure EEG signals are distinguishable in complexity domain. Also, this complexity
profiles have been justified using t-test (p <0.01).

The complexity profiles of normal, interictal and ictal EEG signals have demonstrated
clear distinction among them. The 75% sensitivity and 100% specificity of ictal EEG, 100%
sensitivity and 87.5% specificity of interictal EEG, 100% sensitivity and 100% specificity of
normal EEG and total accuracy of 91.7% reveal that these three EEG signals are differen-
tiable in complexity domain. Moreover, One-way ANOVA test has also provided p <0.01 to
distinguish these three signals.

Although the MSE method has shown feasible results with classification accuracy of
91.7%, this accuracy result is not so promising compared to some other studies (Guo et al.,
2011; Kumar et al., 2014; Song et al., 2016; Zhang et al., 2019)(Table 5). This is the limita-
tion of our study.

Table 5: Comparison among methods applied on the Bonn dataset

Authors Year Methods Accuracy (%)
Guo et al. (Guo et al., 2011) 2011 Genetic programming+ 93

K-nearest neighbor classier
Yuan et al. (Yuan Q, 2011) 2012 Approximate entropy + ELM 88.00 ± 0.75
Nicolaou et al. (Nicolaou and Georgiou, 2012) 2012 Permutation entropy + SVM 83.13
Kumar et al. (Kumar et al., 2014) 2014 Fuzzy approximate entropy + SVM 95.85
Song et al. (Song et al., 2016) 2016 a novel fusion feature + SVM 93.67
Zhang et al. (Zhang et al., 2019) 2019 W-FPE-F + SVM 99.56
This paper MSE+SVM 91.7
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5 Conclusion

This research employs a complexity analysis method to characterize the complexity of EEG
signals with a view to detecting the epileptic seizure. The complexity curves reveal that the
proposed method is feasible to distinguish normal, interictal and ictal EEG signals in the
complexity domain. Using support vector machine (SVM) and statistical tests, the effective-
ness of distinguishing ability of the proposed method has been verified with the promising
classification accuracy of 91.7% and p <0.01.
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