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Abstract: Correlated data frequently arise from cross-sectional studies with complex cluster
design because individuals from the same cluster or region share some common characteris-
tics. Analyzing correlated data using standard statistical methods, which are applicable for
independent data, may produce misleading inference. This article reviews the GEE and its
software implementations and provides some guidelines for using it in practice. To illustrate
GEE, data from the 2011 Bangladesh Demographic and Health Survey, a two-stage complex
cluster survey have been used to identify the risk factors for diabetes and hypertension. The
results suggest that age, current working status, education, socioeconomic status, and body
mass index are significantly associated with hypertension and diabetes. Further, we found
significant positive correlation between the responses from the same cluster, justifying the
use of GEE.
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1 Introduction

Correlated data arise frequently in longitudinal studies conducted in many epidemiological
and biomedical practices where subjects are followed over time with repeated monitoring
of risk factors or health outcomes or both. Such correlated data also often arise from cross-
sectional studies with complex study design such as multistage cluster design, where out-
comes or responses from the same cluster tend to be correlated (Diggle, 2002). Analyzing
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such data using standard statistical methods and models under independence assumption
may provide misleading inference on the parameters of interest and hence it requires appro-
priate statistical methods and models for valid inference (Burton et al., 1998). When such
outcome is discrete, for example-binary or count, the complication of analyzing correlated
data is partly due to the lack of rich class of models such as multivariate Gaussian for the
joint distribution of the correlated outcomes (Zeger and Liang, 1986; Hanley et al., 2003).
Generalized estimating equations (GEE) was introduced by Zeger and Liang (1986) as an
extension of generalized linear models (GLM) (McCullagh, 1984) for analyzing discrete cor-
related data, in which a working correlation matrix for the responses from the same subject
or cluster is used. Later an exhaustive review of the development of the GEE approach was
discussed by Ziegler et al. (1998). The GEE approach requires specification of only first
two moments of the responses from the same subject or cluster rather than full specification
of the joint distribution. The advantage of GEE is that it fits marginal mean models and
hence requires only correct specification of marginal means, and provides asymptotically
unbiased estimate of the regression coefficients even under mis-specification of correlation
structure. In addition, the GEE estimates have population-average intuitive interpretation as
compared with the other class of models for correlated data such as random effect models
with conditional interpretation (Lee and Nelder, 2004, 1996).

As more advancements are made at biomedical studies, implementations of GEE method-
ology using built-in functions in common statistical software such as R, SAS, and Stata have
become available. The GEE is increasingly being used by both applied statisticians and pub-
lic health researchers for analyzing data from longitudinal studies(Fitzmaurice et al., 2012;
Feng et al., 2001). Although data from nationally representative cross-sectional survey with
complex cluster design, for example, Bangladesh Demographic and Health Survey (BDHS)
(NIPORT et al., 2011), are often correlated because individuals from the same cluster or
region tend to be similar, use of GEE or similar methods for analyzing such survey data is
very limited. The lack of application of GEE for survey data is perhaps due to unfamiliarity
of the methods or other technical challenges that practitioners face such as availability of
options in the commonly used software packages.

Thus, we present a brief review of GEE methodology and its implementation using stan-
dard statistical software packages. Further, we illustrate the GEE method with an applica-
tion to data from Bangladesh demographic and health survey of 2011. In particular, we
demonstrate the use of GEE to identify the associated risk factors for two common chronic
diseases–diabetes and hypertension.

The paper is organized as follows. Section 2 reviews the GEE methodology and Section
3 discusses the implementation of GEE using standard statistical software. An illustration
using health survey data is discussed in Section 4. Section 5 ends the paper with a general
discussion.

2 Brief Overview of GEE

2.1 Notations

Let Yij , i = 1, 2, . . . , N, j = 1, 2, . . . , ni be the jth response from the ith subject or cluster
and Xij = {xij1, xij2, . . . , xijp} be the vector of corresponding p covariates. The responses
yij ’s (j = 1, . . . , ni) are assumed to be correlated for each subject but independent between
the subjects (or clusters). The marginal expectation E(Yi|Xi) = µi = (µi1, . . . , µini)

T is
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modelled by g(µi) = XT
i β, where βT = (β1, . . . , βp)

T is a p-dimensional vector of unknown
regression coefficients and g(·) is a known link function. For binary data, logit or probit link
and for count data log link are commonly used link functions. For example, for the logit
link, the mean model can be expressed as

E(Yij |xij) = µij =
exp(XT

i β)

1 + exp(XT
i β)

.

As proposed by Liang and Zeger (1986), GEE uses a common correlation matrix for repeated
measurements from the same subject or cluster. Using standard notations, let us consider
Vi = A

1/2
i Mi(α)A

1/2
i as an working covariance matrix, where Ai is a diagonal matrix with

known variance function ν(µij) and Mi(α) is the corresponding working correlation ma-
trix, which may depend on some parameters α which is generally unknown. Under an
assumption of a common structure of Mi(α), the regression coefficient β can be estimated
by solving the following equations (called GEE):

U(β,α) =

N∑
i=1

DT
i V
−1
i (yi − µi) = 0,

where Di = ∂µi/∂β.

2.2 Working Correlation Matrix

The working correlation matrix M(α) for a balanced design with same number of repeated
measurements from each subject or cluster represents the within subject dependence and
takes the following form:

M(α) =



1 Corr(Yi1, Yi2) . . . Corr(Yi1, Yin)

Corr(Yi2, Yi1) 1 . . . Corr(Yi2, Yin)

...
...

...

Corr(Yin, Yi1) Corr(Yin, Yi2) . . . 1


The dimension of the matrix depends on the number of observations (n) for each subject or
cluster. Different forms of working correlation matrix can be assumed. The most commonly
used structures are independent, exchangeable (or compound symmetry), auto-regressive
(AR), M-dependent and unstructured. The independent structure assumes that observations
from the same subject or cluster are uncorrelated , i.e, Mi,j = 0 if i 6= j. Under this assump-
tion, the GEE is equivalent to the GLM score equation. The exchangeable structure assumes
equal correlation between the observations, i.e Mi,j = ρ if i 6= j with −1 ≤ ρ ≤ +1. In
the AR structure, the observations from the same subject or cluster have auto-regression
relationship, i.e, Mi,j = ρ|i−j| if i 6= j. The correlation between any two adjacent observa-
tions is ρ and ρ2 for the observations that are separated by three consecutive measurements
and so on. Similarly, in the M-dependent structure, the consecutive observations have com-
mon correlation (say ρ1), pair of observations separated by three measurements common
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correlation (say ρ2) and so on. In general, Mi,j = ρ|i−j| if i 6= j. Observations with sep-
aration greater than m are assumed to be independent, where m is a arbitrary value that
represents the order of separation. While specifying this structure, the choice of a value
of m should be less than the dimension of matrix n. Finally, the unstructured correlation
assumes no specific structure of the correlation, i.e, Mi,j = ρi,j if i 6= j. However, the main
disadvantage of this structure is that the number of parameters to be estimated increases
with increasing dimension of the matrix. Although the estimate of β is not affected by
the choices of the appropriate working correlation matrix, its mis-specification affects the
efficacy of the estimated regression coefficients (Fitzmaurice, 1995; Wang and Carey, 2003;
Mancl and Leroux, 1996; Sutradhar and Das, 2000). There are several methods that have
been proposed in the literature for selection of appropriate working correlation structure,
for example, the methods proposed by Cui and Qian (2007) and Jaman et al. (2016). In
general, if the number of observations in each subject or cluster is small in a balanced
and complete design, then unstructured correlation matrix is recommended. For a dataset
from longitudinal study with mistimed observations, it is reasonable to choose a correlation
model which is the function of time, for example, auto-regressive or M-dependent. For a
data set from a complex clustered design where there is no chronological ordering of the
observations from the same cluster, an exchangeable structure may be appropriate choice
(Horton and Lipsitz, 1999).

2.3 Estimation

Under a given correlation structure, the β can be then estimated by the following standard
iterative process proposed by Liang and Zeger (1986):

(i) Choose an initial estimate β(0) of β as the estimate obtained by fitting GLM considering
independent working correlation.

(ii) Given β∗ (β∗ = β(0) at the first iteration), calculate moment estimate α∗ of α of the
working correlation matrix M(α). For example, for exchangeable working correlation

α∗ =
1

N

N∑
i=1

1

ni(ni − 1)

ni∑
j 6=k

e∗ije
∗
ik where e∗ij =

yij − µ∗ij√
ν(µ∗ij)

.

For AR(1),

α∗ =
1

N

N∑
i=1

1

ni − 1

ni∑
j≤ni−1

e∗ije
∗
i,j+1.

(iii) Given the working correlation matrix M(α∗) obtained in step (ii), the current estimate
β∗t is updated using the Newton-Raphson method as

β∗(t+1) = β∗t +
[
I(β,α)

]−1∣∣∣
β=β∗t

U∗(β,α)
∣∣∣
β=β∗t

.

(iv) Iterate steps (ii) to (iii) until a desired convergence achieved. At convergence, the
estimate of β is denoted by β∗ and the final estimates of α are given by α∗ used in
the final step of iteration. The estimates β∗ of β will be referred as GEE estimates.
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The variance of the GEE estimate (var(β̂)) can be estimated in two different approaches:
sandwich-based robust estimate and model-based naive estimate. The sandwich-based ro-
bust estimator can be used to estimate (var(β̂)) empirically through the iterative process by
substituting the estimate of β̂ into the following equation at each iteration and updated it
for final estimate:

Vs =

(
N∑
i=1

D′iV
−1
i Di

)−1( N∑
i=1

D′iV
−1
i Cov(Yi)V −1i Di

)(
N∑
i=1

D′iV
−1
i Di

)−1
,

where Cov(Yi) = E(Yi − µi)(Yi − µi)
T . If the mean model is correct, this estimator is

asymptotically unbiased and consistent even under mis-specification of working correlation
structure. In contrast, the model-based estimator is consistent when both the mean model
and covariance model is correctly specified. However, the correct form of working corre-
lation matrix generally is usually unknown to the analyst and therefore if the number of
subjects or cluster size is large sandwich-based estimator is a preferable choice (Horton and
Lipsitz, 1999; Liang and Zeger, 1986).

3 Software Packages for Implementation of GEE

Most statistical software, such as R, SAS, and Stata, offer packages for fitting marginal
models using GEE. We described here the available packages that are commonly used to
implement the GEE methodology. There are two packages available in R: gee and geepack.
The basic difference between these two packages is that geepack offers an option to identify
the order of the observations within the groups (subjects or clusters) for fitting temporal
correlation models to the datasets with missing values, which is not possible in gee. In
addition to that, it provides an ANOVA method that allows to carry out multivariate Wald
test. To implement GEE in Stata, package xtgee is widely used as part of xt cross-sectional
time-series analysis tools. The SAS software uses PROC GENMOD to implement GEE. Table 1
describes how the correlation model can be implemented using each of the three software.
All software have facilities for implementing mean models with different link functions. For
example, for binary data, the commonly used link functions are logit, probit and cloglog,
and for count data, only log link is widely used.

Table 1: Options for specifying correlation structure in different software.

Correlation Structure R (gee, geepack) Stata SAS
Independence corstr=independence corr(ind) corr=inde
Exchangeable corstr=exchangeable corr (exc) corr=exch
Unstructured corstr=unstructured corr(uns) corr=un
Auto-regressive corstr=AR-M, ar1 corr(ar 1) corr=ar
M-dependent corstr=stat_M_dep corr(sta m) corr=mdep(m)
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4 Application of GEE to Health Survey Data

4.1 Data and Variables

An application of GEE is provided to diabetes and hypertension data extracted from the
2011 BDHS aiming at investigating the factors associated with these two common non-
communicable diseases. Both diabetes and hypertension significantly increases the risk of
cardiovascular diseases (CVDs) such as stroke, myocardial infarction, premature death. Ac-
cording to the WHO estimate in 2014 (WHO, 2014), about 17 million deaths occur world-
wide due to CVDs of which almost 80% occurs in low and middle income countries like
Bangladesh. The prevalence of diabetes and hypertension among the Bangladeshi adult
population increased markedly in the last two decades (Joshi et al., 2007; Saquib et al.,
2012). The prevalence of diabetes increased from 3.2% in 1992 to 13.5% in 2015 and
hypertension from 11% in 1992 to 20.4% in 2015 (Zaman et al., 2013). Several studies
(Joshi et al., 2007; Saquib et al., 2012) have been conducted to identify the risk factors
associated with hypertension and diabetes, most of which were small-scale and confined
to a specific group or community or based on data from a clinic or hospital, which cannot
provide sufficient and accurate results for Bangladesh at large. Therefore, findings of these
studies make it difficult for policy makers to design appropriate policies for prevention or
reduction of the burden of such diseases. Although few studies (Chowdhury et al., 2016)
focused on the nationally representative data from large scale survey such as BDHS, none of
these applied appropriate statistical methods and models for analyzing such data allowing
for dependence between the responses from the same cluster and may fail to provide valid
conclusion regarding the parameter of interest (Hanley et al., 2003; Moen et al., 2016). This
paper analyzes diabetes and hypertension data of the 2011 BDHS using GEE to identify the
associated risk factors and make some recommendations.

The BDHS is a national representative cross-sectional survey, which has been conducted
in every three years since 1993 as a part of worldwide demographic and health survey con-
ducted in developing countries under the authority of the National Institute for Population
Research and Training (NIPORT) and Measure DHS (NIPORT et al., 2011). The BDHS em-
ploys two-stage stratified cluster sampling method, where in first stage, enumeration areas
(EA) were randomly selected (75% from rural area and 25% from urban area) from each
of the seven administrative divisions, and in the second stage, households were selected
using systematic sampling method from the each selected EA. For hypertension and dia-
betes data, one in three of the eligible households (subsample) were taken in consideration
for gathering associated biomarker information of all members of age 35 and older. De-
tails on sampling methods, sample size, survey procedure and questionnaires can be found
elsewhere (NIPORT et al., 2011).

For each eligible adult in the selected household, three measurements of both systolic
and diastolic blood pressure were taken almost 10 minute intervals, where average of last
two measurements was considered as final blood pressure values. An individual was con-
sidered hypertensive if systolic blood pressure (SBP) ≥ 140 mmHg (millimeters of mer-
cury) and/or, diastolic blood pressure (DBP) ≥ 90 mmHg and/or if he/she is taking anti-
hypertensive medication during the survey, otherwise not. For identifying the individuals
with diabetes, the individuals who are told by doctor or nurse to have diabetes and/or tak-
ing medication for it are considered as diabetic patients, otherwise not. Information on both
the diabetes and hypertension are considered as response variables.

www.jBiomedAnalytics.org

http://www.jBiomedAnalytics.org


A tutorial on GEE with survey data 43

Based on the literature (Chowdhury et al., 2016; Joshi et al., 2007) and exploratory anal-
ysis, the associated risk factors of both diabetes and hypertension considered here are age,
sex, education (no education, primary, secondary, higher), wealth index (poorest, poorer,
middle, richer, richest), place of residence (urban, rural), administrative division (Barisal,
Chittagong, Dhaka, Khulna, Rajshahi, Rangpur, Sylhet), body mass index (BMI: underweight
if BMI <18.5, normal if BMI 18.5-24.9, and overweight/obese if BMI ≥25), and current
working status (yes, no). The calculated wealth index in BDHS was re-categorized as ‘poor’
for the poorest and poorer, ‘middle’, and ‘rich’ for the richest and richer, respectively. For ex-
ploratory analysis, age was categorized as 35-45 yrs, 46-55 yrs and 56 and above. However,
age was treated as continuous in the multivariable regression model.

4.2 Statistical Analysis

Firstly, exploratory analysis based on contingency table was performed to estimate the preva-
lence of diabetes and hypertension with 95% binomial confidence interval for true preva-
lence, by the background characteristics (risk factors) of the respondents. The estimate was
obtained by incorporating survey weights. Secondly, as the responses (binary outcome) on
diabetes and hypertension from the same EA (cluster and then household) were expected
to be correlated as they share the same cluster-level information such as food, environment,
treatment, awareness about disease prevention etc., we preferred GEE based marginal lo-
gistic regression models to analyse the data. Separate models with logit link were fitted
for diabetes and hypertension to identify the associated risk factors. Thirdly, we fitted the
models under three different correlation structures namely, independence, exchangeable,
and autoregressive of order 1 (AR 1) to examine if the results of the mean models (e.g.
estimates of the regression coefficients of the model and the corresponding standard error
and p-value) vary across the correlation models. The robust sandwich based estimate of the
standard error of the regression coefficient was reported. The following commands in Stata
and R were used to implement GEE for the hypertension data. Similar commands can be
used for diabetes data by replacing the response variable.

To estimate the mean model with robust sandwich standard error, Stata command for
GEE:

xi: xtgee hypertension age i.sex i.education i.wealth i.residence\\

i.division i.bmi i.diabetes i.cworking, link(logit) \\

corr(exchangeable) family(binomial) robust

xtcorr // to estimate correlation matrix

To estimate GEE under different correlation structure, for example AR(1), replace
corr(exchangeable) by corr(ar 1). To estimate the mean model with robust sandwich
standard error R codes for GEE:

modelgee<-gee(hypertension~age+factor(sex)+factor(education)\\

+factor(wealth)+factor(residence)+factor(division)\\

+factor(bmi)+factor(diabetes)+factor(cworking), \\

id=clusterid, family=binomial, corstr="exchangeable")

summary(modelgee)

J Biomed Analytics, Vol. 1 No. 1 (2018), pp. 37–50



44 T. Akter et al.

4.3 Results

The overall prevalence of hypertension and diabetes were reported as 24.9% and 5.7%,
respectively (Table 2). The prevalence of both diseases increased with the increasing level
of age, education, socioeconomic status, and BMI. Female and urban people are at higher
risk of developing both hypertension and diabetes. There was also regional variation in
the prevalence of the diseases. From the GEE model for hypertension, the results suggest
that under three correlation models, the estimates of the regression coefficients are similar,
except for the estimates of the associated standard error. The results revealed that age, sex,
education, socio-economic status, diabetes and BMI have significantly positive association
with the odds of having hypertension (Table 3). For example, the odds of having hyperten-
sion among the individuals with normal BMI was 85% percent higher (OR=e0.6161 = 1.85)
compared to those individuals with BMI less than 18.5. Similarly, the odds among the over-
weight and obese was reported to 3.69 (OR=e1.3075 = 3.69) times of those individuals with
BMI less than 18.5. Further, place of residence and current working status were found to
be negatively associated with the odds of having hypertension. For example, people living
in rural area and the people working outside were found to have significantly lower odds
of having hypertension than their counterparts. Under both AR(1) and exchangeable cor-
relation, the estimated within cluster correlation was positive and statistically significant,
suggesting the necessity of using GEE model rather than standard logistic model. Similar
results can be observed for the diabetes (Table 4). For both data, the number of clusters was
reported as 457 with an average of 11.5 individuals per cluster.

5 Discussion and Conclusion

The GEE based marginal models have been widely used by the applied statisticians for an-
alyzing longitudinal data, however, the public health or biomedical researchers who fre-
quently use complex survey data rarely apply GEE or similar methods, despite that data
from such survey are often correlated. The lack of popularity of these methods among the
practitioners is probably due to the unavailability of user friendly manuals describing the
methods and their implementations using common statistical software packages. This paper
reviewed GEE with an aim to provide some guidelines for the public health and biomedical
researchers so that they can understand the method and its application to analyzing cor-
related data. The paper also showed an application of the GEE for analyzing diabetes and
hypertension data from a cross-sectional survey (BDHS 2011) with complex design. Find-
ings suggest that the odds of having hypertension and diabetes increase with the increasing
level of age, education, socioeconomic status, and BMI. For BMI, although the individuals
with low BMI (say less than 18.5) tend to have smaller odds of having such cardiovascular
disease compared to those with high BMI, they may have other health hazards due to nutri-
tion deficiency (Lavie et al., 2011). Further, males, people from rural area, people working
outside have lower odds of having both hypertension and diabetes. The results (particularly
the SE of the estimates of the regression coefficients and the associated p-values) are slightly
different from those found in other studies which analyzed similar data using the standard
logistic regression approach (Chowdhury et al., 2016; Saquib et al., 2012). This is because
there was significantly positive correlation between the responses of hypertension and dia-
betes from the same cluster, and the GEE provided estimates allowing for such correlation,
which was not possible by using standard logistic regression.
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Further findings of the study suggests that the GEE estimates of the regression coefficient,
particularly the SE and p-value, under both AR(1) and exchangeable correlation structure
is slightly different from the estimates under independence correlation structure. Because,
under independence correlation structure, the GEE provides equivalent estimates to those
of the standard logistic regression model that does not account for the effect of correlation
between the responses from the same cluster. The difference in the results between these
two approaches increases with increasing degree of intra-cluster correlation. However, the
advantage of using GEE for analyzing cluster data is that, even if intra-cluster correlation
does not exist in practice, the GEE provides the same results as the standard logistic mod-
els. We therefore recommend to use GEE for analyzing complex survey data. Alternatively,
mixed-effect models, a random intercept mixed model which is equivalent to GEE with ex-
changeable correlation (Lee and Nelder, 2004, 1996), can be applied to analyze such data
if the number of clusters and their size is large (Moen et al., 2016). However, the GEE esti-
mate has intuitive population average interpretation compared to those of the mixed effect
models that have cluster-specific conditional interpretations.

There is one limitation of the study that needs to be mentioned. The application of the
study dealt with a secondary data from retrospective cross-sectional survey, where data on
diabetes were collected by asking question that whether he/she was told by doctor or nurse
to have diabetes or taking medication, rather than collecting data from their blood sample.
Therefore, there is very high chance of under reporting of diabetes data.
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Table 2: Prevalence of diabetes and hypertension by the background characteristics.

Hypertension Diabetes
n at risk Prevalence (95% CI) n at risk Prevalence (95% CI)

Age
35-45 3196 16.4 (15.1-17.8) 3060 4.1 (3.3-4.9)
46-55 2146 25.2 (23.1-27.3) 2026 6.3 (5.2-7.7)
56+ 2529 35.3 (33.2-37.5) 2259 7.5 (6.3-8.9)

Sex
Male 3896 18.7 (17.3-20.1) 3751 5.1 (4.3-5.9)
Female 3975 31.1 (29.5-32.7) 3594 6.4 (5.5-7.4)

Education
No education 4798 25.3 (23.9-26.7) 4331 4.1 (3.5-4.9)
Primary 1502 21.7 (19.4-24.1) 1449 5.9 (4.6-7.4)
Secondary 1033 22.9 (20.2-25.9) 1019 8.4 (6.7-10.6)
Higher 538 35.7 (31.1-40.6) 546 15.1 (11.8-19.0)

Wealth index
Poor 2827 19.6 (18.0-21.2) 2482 2.0 (1.4-2.8)
Middle 1526 21.5 (19.3-23.9) 1415 3.4 (2.5-4.6)
Rich 3518 31.6 (29.9-33.4) 3448 10.0 (8.8-11.2)

Place of residence
Urban 2581 31.6 (29.4-33.9) 2518 9.7 (8.4-11.3)
Rural 5290 22.9 (21.7-24.2) 4827 4.4 (3.8-5.1)

Division
Barisal 936 24.3 (21.5-27.3) 867 4.4 (3.2-6.1)
Chittagong 1181 21.1 (18.8-23.5) 1102 7.1 (5.7-8.8)
Dhaka 1343 26.2 (23.9-28.6) 1295 6.9 (5.7-8.4)
Khulna 1238 29.4 (26.8-32.1) 1195 4.1 (3.1-5.4)
Rajshahi 1114 23.5 (20.9-26.2) 1039 5.7 (4.4-7.4)
Rangpur 1095 26.8 (24.1-29.6) 955 2.7 (1.9-3.9)
Sylhet 964 20.2 (17.6-23.0) 892 5.7 (4.4-7.5)

BMI
Underweight 2145 16.6 (14.9-18.4) 1896 2.7 (2.0-3.8)
Normal 4304 24.3 (22.9-25.7) 4068 5.2 (4.5-6.0)
Overweight/Obese 1175 42.6 (39.3-45.9) 1154 13.6 (11.4-16.1)

Diabetes
No 6863 23.7 (22.6-24.8)
Yes 439 48.3 (42.9-53.8)

Hypertension
No 5409 4.0 (3.4-4.6)
Yes 1893 11.1 (9.5-12.9)

Currently working
No 4051 32.5 (30.9-34.1) 3675 7.0 (6.1-8.0)
Yes 3818 16.8 (15.5-18.2) 3668 4.4 (3.7-5.3)

Overall 7871 24.9 (23.8-26.0) 7345 5.7 (5.2-6.4)
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Table 3: GEE estimates of the logistic regression models for hypertension.

Independence Exchangeable AR(1)
Coef. S.E Coef. S.E Coef. S.E

Age 0.0443 ∗∗ 0.0026 0.0444∗∗ 0.0026 0.046∗∗ 0.0038

Sex
Male
Female 0.6797∗∗ 0.1043 0.6729∗∗ 0.1038 0.5831∗∗ 0.1545

Education
No education
Primary 0.0336 0.0863 0.023 0.0859 0.0521 0.1273
Secondary 0.2837∗∗ 0.1077 0.274∗ 0.1075 0.3475∗ 0.1477
Higher 0.7259∗∗ 0.1267 0.7057∗∗ 0.1271 0.6748∗∗ 0.1682

Wealth index
Poor
Middle -0.0396 0.0911 -0.0379 0.0903 -0.0617 0.1422
Rich 0.1957∗ 0.0791 0.1739∗ 0.0787 0.1558 0.1248

Place of residence
Urban
Rural -0.1713∗ 0.0744 -0.1853∗ 0.0743 -0.2457∗ 0.0992

Division
Barisal
Chittagong -0.2032 0.1282 -0.1989 0.1298 0.1974 0.1735
Dhaka 0.0846 0.1193 0.0756 0.1212 0.3616∗ 0.1693
Khulna 0.2397 0.1288 0.2343 0.1293 0.3376∗ 0.1703
Rajshahi 0.1163 0.1247 0.1163 0.1269 0.1672 0.1957
Rangpur 0.4167∗∗ 0.1258 0.4121∗∗ 0.127 0.8068∗∗ 0.1908
Sylhet -0.0863 0.1429 -0.0869 0.1458 0.021 0.215

BMI
Underweight
Normal 0.6162∗∗ 0.0793 0.5934∗∗ 0.0785 0.6625∗∗ 0.1196
Overweight/Obese 1.3075∗∗ 0.1028 1.2917∗∗ 0.1025 1.3644∗∗ 0.1521

Diabetes
No
Yes 0.5573∗∗ 0.1216 0.5526∗∗ 0.1199 0.4553∗∗ 0.1734

Currently working
No
Yes -0.3221∗∗ 0.0938 -0.3217∗∗ 0.0936 -0.42∗∗ 0.1362
∗p < 0.05, ∗ ∗ p < 0.01
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Table 4: GEE estimates of the logistic regression models for diabetes.

Independence Exchangeable AR(1)
Coef. S.E Coef. S.E Coef. S.E

Age 0.0156∗∗ 0.0045 0.0156∗∗ 0.0045 0.0143∗ 0.0057
Sex
Male
Female 0.1773 0.162 0.1721 0.162 0.1429 0.2115

Education
No education/ Preschool
Primary 0.6102∗∗ 0.1528 0.6052∗∗ 0.153 0.4184∗ 0.1844
Secondary 0.8578∗∗ 0.1608 0.8523∗∗ 0.161 0.8803∗∗ 0.1894
Higher 1.3532∗∗ 0.1798 1.3458∗∗ 0.1801 1.2393∗∗ 0.2223

Wealth index
Poor
Middle 0.3479 0.2289 0.3489 0.2284 0.2126 0.2664
Rich 1.036∗∗ 0.1711 1.0329∗∗ 0.171 0.9379∗∗ 0.1942

Place of residence
Urban
Rural -0.1216 0.115 -0.127 0.1151 -0.1871 0.1408

Division
Barisal
Chittagong 0.3211 0.1894 0.3229 0.1897 0.1786 0.2495
Dhaka 0.3593 0.1917 0.3578 0.1918 0.048 0.2482
Khulna -0.0926 0.2112 -0.097 0.2109 -0.0769 0.2599
Rajshahi 0.3125 0.202 0.3142 0.2026 0.2413 0.2561
Rangpur -0.25 0.2496 -0.2476 0.25 -0.4546 0.3056
Sylhet 0.3265 0.2188 0.3269 0.22 0.3074 0.2874

BMI
Underweight
Normal 0.5378∗∗ 0.1685 0.5339∗∗ 0.168 0.6436∗∗ 0.2169
Overweight/Obese 1.0403∗∗ 0.1993 1.0346∗∗ 0.1992 1.1086∗∗ 0.2526

Hypertension
No
Yes 0.5465∗∗ 0.1219 0.5464∗∗ 0.1218 0.5264∗∗ 0.1555

Currently working
No
Yes -0.6203∗∗ 0.175 -0.6217∗∗ 0.1751 -0.7034∗∗ 0.2274
∗p < 0.05, ∗ ∗ p < 0.01
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